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ASSESSING AND CONTROLLING THE AVAILABILITY

OF FAILURE-DEGRADED SERVICE AGENTS

by

D. P. Gaver and P. A. Jacobs

EXECUTIVE SUMMARY

Military items such as airborne surveillance systems (UAVs, JSTARS, helicopters,

etc.) or combat vehicles (tanks, APCs, ships) may have high effectiveness when available

on station, but require occasional restoration (refueling, re-arming, scheduled

maintenance) and repair after unscheduled failures of certain subsystems. This

requirement takes them off station, where delays occur that are affected by the numbers

and types of support resources and the philosophy of scheduling those resources.

This paper considers the effect of decision choices on long-run item availability on

station when items can be in several levels of capability/effectiveness when on station.

The model is used to show that a simple binary decision rule (that depends on ratios of

endurance, failure, and restoration and repair rates) guides the decision as to whether a

failed item should be completely repaired to its highest level, or returned to duty at an

incompletely-capable state.

View this as an indicator of the types of rules anticipated to apply in realistic

generality. These will be the subject of additional research.



ASSESSING AND CONTROLLING THE AVAILABILITY

OF FAILURE-DEGRADED SERVICE AGENTS

by

D. P. Gaver and P. A. Jacobs

1. Introduction and Problem Formulation

In a variety of situations several individual items (agents) coexist and perform

operational functions, such as region surveillance or actual combat. They require

occasional support (e.g. if vehicles, or military "platforms", refueling and repair). Time

out for restoration (refueling) is inevitable and unavoidable, but failure of a unit's

functional capability or operational condition, while necessary, need not be complete: a

partially-failed or degraded unit can profitably remain active under some circumstances.

Under certain circumstances, to be described, it is overall-effective to partially repair a

completely failed item, rather than expend time and resources for repair to complete

functionality. A unique military situation is that in which an item has been subjected to

chemical or biological attack, and must be decontaminated: there can be a choice between

partial, or complete decontamination; see Klutke and Novikov (1996). In this paper we

provide initial models and rules for the control of all such systems.

Examples of the options and decision choices occur extensively in the military:

depending on need for information, it may well be more effective to quickly field

partially effective sensor (e.g. UAV) systems than to wait for complete repair. The same

can be true of tactically required artillery pieces, tanks, or reconnaissance or attack

aircraft; the choice of partial or total decontamination is another example, mentioned

above. Other examples occur when prompt assistance is needed after an emergency,



either natural (e.g. earthquake or fire) or terrorist-caused. Failures may now be injuries to

humans or infrastructure; partial "repair" means initial diagnosis and stabilization of an

injured individual, or provision of temporary alternative communication or transportation

service.

The situation modeled is analogous to the classical repairman problem (see Feller

(1968)) but is more general - and realistic - in that, for us, the classical "machines", our

agents, can fail partially, i.e. to one of several intermediate levels of productivity and

then, having finally reached the restoration-repair service facility, can be repaired there to

chosen levels. This control feature is, in principle, accomplished probabilistically in our

models. The control objective is to maximize the expected utility of the system of agents,

using as control options the rate of demand for repair, and the choice of repair objective.

The utility function involved is a linear function of the numbers of agents available in

each performance category. For UAVs this can be expected time on station, weighted for

sensor capability.

Our analysis begins by proposing a quasi-stochastic "expected value" or deterministic

model for a system of agents that can each be in one of three states of performance

capability: Good, Medium, and Bad. When restoration or repair is required the agent

progresses to a central homebase server at which accumulated and queued restoration and

repair tasks are processed in a weighted processor-sharing manner (this is unrealistic in

detail, but is analytically tractable; it will be useful for guiding more detailed

simulations). Control is accomplished by choice of the weighting probabilities. This

model accounts for restoration-repair facility saturability by using an approximation

described in Filipiak (1988). The deterministic model is especially convenient for

exploring time-dependent or transient system behavior.

Next, a Markov stochastic network version of the above model is constructed using

the techniques of Kelly (1979). The implications of the two model types are compared

numerically and seen to be in useful agreement for the utility function adopted.
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Our work is related to policies for minimal repair; cf. Brown and Proschan (1983),

Phelps (1983), Chen and Feldman (1997), Kijima, Morimura, and Suzuki (1988) and

Righter (1997). Also relevant are analytical models of sortie generation, Hackman and

Dietz (1997) that address more complex setups in a steady-state context.

2. A Pseudo-Stochastic Deterministic Expected-Value Model

The system will be described in terms of the following state variables. For the present

model these are real-valued and positive functions of time; in the subsequent stochastic

model they are state variables of a multivariate Markov process in continuous time.

Let

UG(t) = number of agents in Good condition and Up (productively available) at time t;

UM(t) = number of agents having experienced a degrading failure and Up at time t;
such agents are said to be in Medium condition;

DGB(t) = number of agents that have experienced a mission-affecting failure (MAF)
while in Good condition and that are Down for repair at time t; such an agent
is totally unproductive and is said to be in Bad condition; it will be repaired to
the Good state;

DMB(t) = number of agents that are Down at time t because of a mission affecting
failure from the Up Medium state;
a decision opportunity: a fraction aMG are sent for further repair to Good,
1 - omG are released to Up Medium state;

DGR(t) = number of agents in Good condition that are Down for restoration (refueling
etc.); they will be restored to the Good state;

DMR(t) = number of agents in Medium condition that are Down for restoration to the
Medium state at time t;
a decision opportunity: a fraction aMR are sent for further repair to Good,
1 - caMR are released to Up Medium state;

DMG(t) = number of agents Down in Medium condition after minimal repair, waiting for
repair to the Good state at time t.
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Parameters:

N = Total number of agents (e.g. mobile sensors)

AGM = rate of occurrence of a degrading failure for a Good Up system

B --= rate of occurrence of a total failure for an agent (e.g. a sensor) in Good
condition

IMB = rate of occurrence of a total failure for an agent in Medium Up condition

1/EG = mean endurance time for an agent in Good condition

I/EM = mean endurance time for an agent in Medium Up condition

l/l-r(G) = mean restoration time for an agent in Good Down condition

l/lr(M) = minimal mean restoration time of an agent in Medium Down condition; agent
will remain in Medium condition

1/y-tm(B) = minimal mean time to repair an agent that has experienced a fatal failure; an
agent in Medium condition will still be in Medium condition after this failure

l//.i(M) = mean time to repair an agent for a degrading failure

G(RG = fraction of service effort applied to repair a restored Medium Down agent to
Good

aXm(G = fraction of service effort applied to repair a Medium Down agent that had a

fatal failure while it was in Good condition

Although the above are constants in the developments that follow, they can be

replaced by nearly arbitrary functions of time, or even state, especially in the quasi-

stochastic deterministic model. The differential equations arising in that formulation can

be numerically solved, e.g. using MATLAB. This paper is devoted to the steady-state

situation, for which analytical solutions are available, and which permit derivation of

(almost) optimal control strategies. But transient and also time-dependent solutions are

often important and can be obtained more easily with the present approach than using

other analytical tools of which we are aware.

Let S(t)=DGR(t)+DMR(t)+DGB(t)+DMB(t)+DMG(t), the number of agents down at time t.
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Let H(x) be a differentiable non-increasing function of x; it will represent the amount

of service effort when there are x agents waiting for or being served. See Filipiak (1988).

An example is

1
H(x) = (2.1)

1 + CsX

where cs is a suitable constant (unity in what follows).

Time-Dependent Equations

dUG(t) W -(GM +AGB +G)UG(t)
dt

Failure or Restoration demand from Good state (2.2a)

+H(S(t))[kIr (G)DGR (t) + ym (M)DMG (t)+ m (B)DGB (t)]

Service to Good state

dUM(t)- , GMUG(t)- (SM +2 MB)UM W

dt
Partial Failure, Failure to Bad or

Good to Medium Restoration demand from Medium (2.2b)

+H(S(t))[,r (M)(1- aRG )DMR(t) + !i (B)(1- aMc )DMB(t)]

Restoration or Repair to Medium

dDGR (t) _ EGUG(t) -H(S(t))MT(G)DGR(t) (2.2c)
dt Good Restoration Restoration

demand completion to Good

dDMR(t) - EMUM(t) -H(S(t))/lr(M)DMR(t) (2.2d)
dt ,

Medium Restoration completion
Restoration demand to Medium

dDMB(t) - MBUM(t)- H(S(t))I.im(B)DMB(t) (2.2e)
dt

Medium fails Repair of Medium, failed to Bad,
to Bad to Medium

dDMG ( - H(S(t))[Mr (M)cXRGDMR (t) + /tm (B)a•MGDMB (t)] - H(S(t))Ym (M)DMG (t (2.2f)

Number continuing from beyond minimum repair: Repair to Good completion
Medium-repaired to Good repair state

5



dDGB(t) - =GBUG(t) - H(S(t))y.m(B)DGB(t) (2.2g)
dt ,

Total failure, Repair Down Good to Good
Good to Bad

In Appendix 1 it is shown that the solution to the steady-state equations obtained from

(2.2) by setting derivatives equal to zero is

UM = U.1/(I+K) (2.3)

UG =U.-KI(I +K) (2.4)

where U is the modified solution of a quadratic:

U = 2N (2.5)

[1 + (1 + csN)c/(1 + Kc)] + V1 + (1 + csN)c/(1 + 7C)]2 - 4csNc/(1 + KC)

K = (aRGEM + aMGXMB)I/GM (2.6)

c- + -"MB _W G+ AGM + (2.7)p,.(M) pro(B) •pr(G) .M kt()

2.1 Repair Control for the Pseudo-Stochastic Model

Suppose the expected utility of the system of agents is written as

g(a; P, N) = UG(a, N') + P UM(a, N)

where we let aRG = aA4G = a, the probability that an agent that has been Down and has

been restored/repaired to Medium level is allocated further repair to the Good state, with

0 _< P < 1. This notation makes explicit the degradation of capability associated with

being in the Medium rather than Good state, and also the control inherent in the

probability a; finally, the influence of the agent population size, N, is expressed.

Given values for 83 and N in addition to other rate parameters, the utility function g

can be numerically studied/optimized on a. Considerable numerical exploration, using

random selections of system parameters in a manner analogous to that suggested by

Miller (1997), leads to the empirical conclusion that random strategies (0 < a < 1) are
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rarely optimal, and, when they do occur are only slightly better than pure strategies

(a = 0, or a = 1). In fact, consideration of the case N large clarifies the situation and leads

to the nearly-optimal control policy as follows:

Let

a=- + MB (2.8)
Py(M) pMo(B)

- + GM + /GB (2.9)
P4(G) ktm(M) Mro(B)

EM + XMB
y - (2.10);LGM

Then i" = ya/ and c = a + b-ya, the parameters in the solution U.

When N becomes large,

Optimum a = 1 if / < a/b;
(2.11)

Optimum a = 0 if P > a/b.

To show this, let N -4 c in expression (2.5) for U to obtain

1+ C +7yaU)= - =-
csc c,(a+bya)

so, by (2.3) - (2.4)

g(a;f c3c )L[(l+i) + (1+ic)

c,(bya + a)

Since

dg y(a-b/b)
da (byc +a)2

the above policy is verified.
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3. A Stochastic Model

Consider a closed queuing network with N agents (e.g. mobile sensors). There are two

service classes: up (U) and down (D). An agent chooses a type each time it leaves the

down service class in good condition. The agent types are

G: is in good condition

M: is in medium condition

The expected time an agent of type i spends in the U class is

1 = 1

v'G EG + MGM+LB (3.1)

Let aG(U) be the expected amount of time an agent spends up in good condition before it

is reclassified; let aM(U) be the conditional expected amount of time an agent spends up

in medium condition before it is reclassified, given it spends time in Medium condition;

let a(U) be the total expected time an agent spends in the up state before it is reclassified.

For O<aRC+aMG

aMU= 1 1
am M+MB eM (MB (3.2)

m RG + cX MG

EM + XMB 8M +;LMB

a3(U) = 1(3.3)
8 G + XGB + •GM

a(U) = aG (U)-+ AMM aM(U). (3.4)

EG + 2GB + ,GM

Let aG(D) be the expected amount of time an agent spends down with a MAF but is in

otherwise good condition before it is reclassified; let aM(D) be the conditional expected

amount of time an agent spends down in Medium condition before it is reclassified, given

it spends time in Medium condition; let aMR(D) be the conditional expected amount of

time a Medium condition an agent spends in restoration before being reclassified, given it

spends time in Medium condition; let aMM(D) be the conditional expected amount of time

an agent in Medium condition spends being repaired for MAF before being reclassified,
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given it spends time in Medium condition; let a(D) be the expected amount of time an

agent spends in Down state before it is reclassified. For O<aRG+fXMG

Em 1 + _MB 1
+1

am (D) =cM+AMB/r(M) £M +AMBkm(B) + 1 (3.5)
= M ccR MB CXG m(M)(3)Om -RG + ;LM aMG YW

8M +;ZMB EM +,MB

aG(D)= eG 1 + (3.6)
eG+XGB+AGM Ilr(G) EG+AC B+AGM *Um(G)

a(D) = aG(D)+ AGM aM(D) (3.7)
EG +)LGB +;LGM

em 1

aMR (D) - M + AMB Mr,(M)(38
8M "- MB ]rM (3.8)

SaRG+ - L MG
E'M + AMB E'M +1MB

•'MB 1

aMB(D) eM + AMB P.m(M) (3.9)
em aRG + MB MG

eM + XMB EM +2 MB

Theorem (3.12) of Kelly (1979) implies that the limiting distribution of the number of

agents in the up class and the down class is

ZU,D (nU, nD)= Ka(U)nu a(D)nD (3.10)
nlu! 'Dn 1 min(k, s)

k=1

where K is a normalizing constant and s is the number of servers in the D class. The

expected number of agents in the up class (respectively down class) is

N a(U'~fl

E[U] = Kf l. nu !n (3.11)
nU=O n

N a(D)nD (3.12)
(respectively E[D] = Ko I nD nD

nD=O f min(k,s)
k=1

9



where Ku and KD are normalizing constants. The expected number of agents in the up

class that are in good condition (respectively medium condition) is

aG(U) (.3
E[UG] E[U]-a--M (3.13)

a(U)

(respectively, E[UM] = E[U] ) (3.14)
a(U) (.4

The expected number of agents in the down class that are being repaired for an MAF but

are otherwise in good condition (respectively are in medium condition)

E[DG]= E[D] aG(D)
a(D) (3.15)

(respectively, E[DM] E[D] aM (D))

a(D) (3.16)

Numerical Examples

Below are tables comparing the numbers of agents in various categories for the

deterministic and stochastic models. While the two models are not exactly comparable,

the deterministic model yields results close to those of the stochastic model.

Table 1
N=4; A•M=0.1; AGoB=0.05; )LMB=O.05; eG=0.2 ; Em=0.2; ,U,•(M)=0.5; ,m(G)=0.5; P (MG)=5;

Mr(G)=10; y(M)=10; aRG=0.5; aMG=0.5; single server; cs=l

Expected Number

Category Deterministic Queuing
Model Model

Good: Up 1.81 1.87
Medium: Up 1.45 1.50
Good: Catastrophic Failure 0.32 0.27
Medium: Catastrophic Failure 0.25 0.21
Repair: Medium to Good 0.06 0.05
Good: Restore 0.06 0.05
Medium: Restore 0.05 0.04
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Table 2
N=4; ).GM=I; i-GB=0.05; 2 UMB=O.1; eG=0. 2 ; emv=0.5; ymr(M)=0.5; gnu(G)=0.5; ty,,,(MG)=5;

k.r(G)=10; r(M*=7; aRG=0.5; aMG=0.5; single server; c,=l

Expected Number

Category Deterministic Queuing
Model Model

Good: Up 0.52 0.60
Medium: Up 1.73 2.00
Good: Catastrophic Failure 0.14 0.11
Medium: Catastrophic Failure 0.95 0.76
Repair: Medium to Good 0.29 0.23
Good: Restore 0.03 0.02
Medium: Restore 0.34 0.27

4. The Repair Policy for the Stochastic Model with N=I

Let

EEU(c)]1 =+ AGM 1 1 (4.1)
g =2 GR + eG + 2 •GM XOB + e, + 2 CGM a C•MR + 8 M

E[D 1 EG 1
E ] GB + S + +Gm yUm(B) •G• +E G + ACMM p,(G)

2 +AGM 1 + FlI eM 1 + AMB 1 (4.2)

"2CGB-+•6G-+AGM /,m(M) a-L2 M,+M Mr(M) A2MBq+-M (Im(B)"

1 P AGM 1 1

g(c;/3) = + 8 + A GM AB + 8G + AM a MB + 8Mg~a~p)E[U(a) + D(a)]

a+p AG

AGM +EM (4.3)

a + G +CG+; 1G +~ AG L + AO y .m(B) y,•(G)] /•(M)] Am.9+em ,M ) y.,(B)l

c+1

1a[1 + b] + -- a

11



Note that

Hence the repair policy is as follows.

The Repair Policy for Stochastic Model with N=1:
a

If / <• then the maximizing a is •=l1; always repair the agent in Mediuml+b

condition to Good.
/3aIf P>< then the maximizing a is ca=1; never repair the agent in Medium
1+b

condition to Good.
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APPENDIX 1

Long-Run Solutions

Setting the derivatives equal to zero in system (2a) - (2g) results in the following

equations

o '(XM ±2 LGB + 8G)UG A-a
+H (S)[/Ir (G)DGR + pm (M)DMG + kim (B)DGB] A a

O4=I1GMUG - (EM +;L~MB)UM A-b
+H(S)[ktr (M)(l - cXRG)DMR + Mm (B)(1 - aMG )DMB] (l b

o = GUG -H(S)/Jr (G)DGR (Al-lc)

o = SMUM -H(S)pr(M)DMR (Al-ld)

o = 2AMBUM -H(S)p.m(B)DMB (Al-le)

o = H(S)[y,1(M)aRGDMR + p,,(B)cXMGDMB] - H(S)gflL(M)DMG (Al -1lf

o = ;LXGBUG -H(S)p.m(B)DGB (Al-1g)

These must be solved subject to the condition that all state values sum to N. Equations

(Al-ld), (Al-le), and (Al-lg) result in

DMB = 1MBUM (Al-2)
H(S)lm (B)

DMRI = MUM (Al-3)
H(S)pr(M)

DGB X1GBUG (Al-4)
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Substitution of (A1-3) and (Al-2) into equation (Al-lb) results in

0 = AGMUG - (eM + 2LMB)UM

+[(1 - aRG)cMUM +(1-a MG)uMBUM] (11-5)

Thus

UG = KUM (A1-6)

where

K=RGEM + aMGXMB

ý-GM (Al-7)

if AGM > 0.

Substitution of (A1-3) and (A1-2) into equation (Al-if) results in

0 = EMaRGUM + )MBOaMGUM - H(S)]m (M)DMG (Al-8f)

Multiplying equation (Al-id) by Ur(G)/]Ar(M), equation (Al-le) by ]Ar(G)/1Um(B), equation

(A1-8f) by /Ar(G)/]Am(M) and equation (Al-ig) by /-Lr(G)//]m(B), adding the resulting

equations and using (A1-6) results in

CUM = H(S)S (A1-9)

where

EGK + EM + /MB + ;LGMK" + GBK
]tr(G) ]t/(M) ]Tm(B) Mm(M) IAm(B)

Note that

S= N-(I+ c)UM (Al-ll)

Thus (A1-9) can be rewritten as

CUM = [N- (1 + I±)UM]H(N-(1 + lK)UM) (A1-12)

Putting U=UG+UM=(I+K)UM and substituting into equation (Al-12) results in
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C u=[N-U]H(N-U) (Al-13)

1+1C

Rewriting,

C U H(N-U) (A!-14)
1+ic [N-U]

Equation (Al-14) has one solution between 0 and N.

In the special case H(x)=1/(1+csx) equation (A1-14) is a quadratic

0 CsC U2 _(I+± (I+cN))U+N (Al-15)

(1± l+l (1+cN))- (1+l- (1+cN))2 -4 csc N]
U-I+1 1+1C (Al-16)

2 csc

Finally

UM=U/( 1 + 1)

and

UG-=' U.
I+K
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APPENDIX 2

A Repair Policy for the Deterministic Expected-Value Model

Let aRG'=aMG= c,. Put

em MB
a - +(A2-1)y,(M) kt,.(B)

E'G ), GM A•GB

b=- + + (A2-2)
y,(G) y.(M) I.m(B)

EM +- MB (A2-3)
AGM

Note that =-iya and c=a+bya. Thus,

c a+bya y(b-a)x (A24)

1+-K 1+7Ya l+Ya

Let U(a) be the solution to equation (A1-9).

Consider the weighted (expected) number of agents up

S(a; = uG (a) + 3UM(ca)

)/a+ ]3 U(a) (A2-5)

for 0_<]/3 < 1.

Policy I: This maximizes a utility function that assigns a relatively low value to units in

the Medium state.

If b<a, then g(a;]3) is maximized at a=l; always repair an agent in Medium condition

to Good.

If b>a, then there is a 0 < Po <P3k -< 1 such that for f3-<3 g(a;cx) is maximized at a=l

(always repair a Medium agent to Good); for /3-/3, g(a;fl) is maximized at a=0 (never

repair a Medium agent to Good).

18



Policy H: This maximizes the long-run total number of agents up

If b<a, then U(a) is maximized at a=l; that is always repair an agent in the Medium

condition to Good.

If b>a, then U(a) is maximized at a=0; that is never repair an agent in Medium

condition to Good.

Proof for Policy H:

Note that f (a) = c is a decreasing function of a if b<a and is a nondecreasing
1+iC

function of a otherwise. Since H(x) is a decreasing function, H(N-U) is an increasing

function of U. Further, (N-U)H(N-U) is a decreasing function of U. If b<a so that f(a)

decreases with a, then equation (Al-13) implies that U(a) increases with a. If b>a, then

f(a) increases with a and U(a) decreases with a. Policy I follows.

Proof for Policy I:

Note that

dg(c; 'Y() (1- P3) ya)+PdU(a)

da 1+ya 1+ya da

y r U(a)+ 7a dU(a)
1+Ya 1+ya da

+ l + dU(a)-1
I+ [-'Ura) da

If b<a, then dU(a)>0 and d g(a; P)>0; thus the maximizing a for g(a;ft) is a=1.
da da

If b>a, then dU(a- <0. If /3=0, then y(a;0)=Uc(a). Recall that
da

UG(a) = YaUM(a).

Thus,

d uG(a)d = WUM(a) + a- d-UM(a)
da da
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and

-dU(cx) = -dUG(ax)+-dUM(a)
dcx dcx dc

= UM (c) + [YC + 1] d UM (c).
dcx

Hence,

d U(a))-7WM(a)
"•-•UM(a)x= dy- < 0.

dac yac+1

The value of a which minimizes UM(a) is cx=l. In addition - UM(cx) < dU(a). Since
dcx dcx

d-U(o) = -UG(a)±+dUM(a) it follows that 0 < -U(ac)- UM(ca) = -[-UG(cx).
da dc dc dc dc dc

Thus, the maximizing value of cx for UG(cx) is ac=l; always repair agents in Medium

condition to Good. Thus,

" U(a)+ yc dUc(a)>0.
l+TYa 1+Tya da

d
Recall from Policy II that if 3-=1 then -dg(a;1)<0 and the maximizing a is cx=0 (never

da

repair a Medium agent to Good condition). Policy I follows.
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